

**EVALUATION OF ANTIFUNGAL ACTIONS OF STEM-BARK
EXTRACTS OF *Entandrophragma cylindricum* AGAINST SOME PLANT
PATHOGENIC FUNGI**

Nweke, F. U.

Faculty of Agriculture, Delta State University,
Asaba Campus, P. M. B. 95074, Asaba, Nigeria
Email: nwekefu@gmail.com

ABSTRACT

*This study was carried out to investigate the potential of extracts of the stem bark of *Entandrophragma cylindricum* Sprague for controlling plant pathogenic fungi. The bark of the *E. cylindricum* was extracted with four different solvents: ethanol, chloroform, petroleum ether and water. The four extracts were tested for the phytochemical constituents and antifungal activities. Five fungal species (*Curvularia lunatus* Tandam and Bilgrami, *Fusarium solani* Mart, *Aspergillus niger* Van Tiegh, *Aspergillus flavus* Link and *Trichoderma longibrachiatum* Rafai) were used in this study. These fungi are responsible for various plant diseases. Phytochemical tests showed that the extracts contained alkaloids, tannins, flavonoids and phenols. The antifungal activity was based on inhibition of the growth of the test fungi by the extracts. The inhibition of *C. lunatus* to all the extracts was significantly ($P < 0.05$) different compared to that of the other fungi. Ethanol extracts exhibited the strongest fungitoxicity against the fungi tested. The results obtained suggest that *E. cylindricum* could be used in controlling diseases caused by the fungi monitored.*

Keywords: *Entandrophragma cylindricum, antifungal, bark extracts, pathogenic fungi*

Introduction

The cost and harmful side effects of synthetic pesticides have prompted investigations on exploiting pesticides of plant origin. Such side effects include residue toxicity on the treated materials, environmental pollution and increasing pesticides resistance (Kumar, 1984; Van Emden and Peakall, 1996). Studies have shown the importance of natural chemicals as a possible source of non-toxic, safe and easily biodegradable alternative pesticides (Singh, 1994; Gorbany and Salary, 2004; Stompor Chrzan, 2004). Furthermore, pesticides of plant origin are cheap and readily available in developing countries such as Nigeria where synthetic fungicides are scarce and expensive for peasant farmers. Numerous natural products of plant origin are pesticidal in action, and have the potentials to control fungal pathogens of crops (Okwu *et al.*, 2007). However Earnsworth (1990) reported that just very few plants; about 10% have been investigated for their anti-microbial activity. Therefore, a large reservoir of potential sources of botanical fungicides such as *Entandrophragma cylindricum* still exists especially in tropical forest awaiting exploitation.

Entandrophragma cylindricum Sprague (sapelli) belongs to the mahogany family meliaceae. Sapelli is one of the species of red wood gown in Nigeria. It is a heliophilous species of the canopy, hermaphrodite and insect pollinated. Its fruits are produced when the trees reach about 50 cm diameter at breast height (dbh) and its seeds are wind dispersed (Garcia *et al.*, 2004). *Entandrophragma cylindricum* and other members of the mahogany family such as

Azadirachta indica and *Khaya senegalensis* have been variously utilized in a number of folk medicine (Gill, 1992; Shmutterer, 1995). The concoction of the stem bark is claimed by local traditional healers to be used in the treatment of fever, cough, black tongue and diabetes.

Although several workers have reported the toxic effects of plant extracts on plant pathogens (Onifade, 2000; Nwachukwu and Umechuruba, 2001; Wokoma and Anaemene, 2003; Okigbo and Igwe, 2007; Nduagu *et al*, 2008; Okigbo *et al*, 2009; Ijato *et al*, 2011; Gupta and Tipathi, 2011), there is a dearth of information on the use of *Entandrophragma cylindricum* as pesticide of plant origin. This study was designed to determine the antifungal activities of stem bark extracts of *E. cylindricum* against some pathogenic fungi of plants.

Materials and Methods

Collection of plant material

The stem bark of *Entandrophragma cylindricum* was collected from Sapele, Delta State, Nigeria. The identity was confirmed by the Taxonomy Unit of the Department of Forestry and Wildlife, Delta State University, Asaba Campus, Asaba, Nigeria.

Preparation of plant material and extracts

The bark was cut into small bits and air-dried at room temperature for 14 days. The dried bits were pounded to coarse particles using a wooden mortar and pestle. Six hundred and fifty grammes (650g) each of the pounded plant materials was extracted with ethanol, chloroform, petroleum ether and water. The extracts were evaporated to dryness on a water bath. The extract yield of each solvent was weighed and calculated with the formula:

$$\% \text{ Yield} = \frac{\text{Weight of extract}}{\text{Weight of sample}} \times \frac{100}{1}$$

Phytochemical screening of crude extracts

Phytochemical screening was carried out on parts of the dry extracts to reveal the presence of secondary metabolites in them according to the methods of Trease and Evans (1989) and Poongothai *et al.* (2011).

Preparation of the test solution

The test solution of each extract was prepared by dissolving 5g of dry extract separately in 50 ml sterile distilled water in a 250 ml Erlenmeyer flask in a water bath. Extracts were subsequently filtered through four folds of cheese cloth.

Source of fungi

Curvularia lunatus (Tandam and Bilgrami), *Fusarium solani* (Mart), *Aspergillusniger* (Van Tiegh), *Aspergillus flavus* (Link) and *Trichoderma longibrachyatum* (Rafai) used in this study were obtained from Department of Microbiology, Delta State University, Abraka, Nigeria. The

fungi were maintained on Potato Dextrose Agar (PDA) slant throughout the period of the experiment. They were revived twice on fresh PDA each time before use.

Screening for antifungal activity

Food poisoning technique described by Okigbo *et al.* (2009) was used to test for antifungal activity of the plant extracts. One millilitre of each extract was pipette aseptically into a series of sterile glass Petri dishes. Ten millilitre of cooled PDA medium was poured into each plate and gently swirled on the laboratory bench to ensure even dispersion of extract and then allowed to solidify. Three replicate plates for each extract were then inoculated at the center with 2mm diameter mycelial discs of each fungus and incubated at 28°C. Radial growth was measured daily for 5 days. Radial growth was taken as the mean growth along two pre-drawn perpendicular lines on the reverse side of each plate.

$$\% \text{ inhibition} = \frac{dc - dt}{dc} \times 100$$

Where:

dc = average diameter of fungal colony in the control plates

dt = average diameter of fungal colony in the treated plates

Method of data analysis

All the data collected from the experiments were subjected to analysis of variance (ANOVA) using SAS 2002 and significant means were separated with the new Duncan's Multiple Range Tests in the SAS 2002 computer software.

Results and Discussion

The result of the percentage yield of the plant extracts using different solvents is shown in Table 1. Ethanol extract was found to have the highest yield of 4.51% while water extract has the lowest yield of 1.60%. This indicates that *Entandrophragma cylindricum* had more non polar constituents than polar ones.

The result of the phytochemical analysis with respect to each solvent is shown in Table 2. All the extracts had alkaloids and flavonoids. In addition, ethanol extract contained tannins and phenols. Chloroform contained phenols. Petroleum ether contained tannins. The components, anthraquinones, reducing sugar, cardiac glycosides saponins, steroids and terpenoids were not detected in the extracts of the plant tested. Other investigators (Gill, 1992; Ahmad *et al.* 1998; Shariff, 2001) have reported the presence of these components in members of the family Meliaceae to which the plant used in the present study belongs. The presence of these secondary metabolites could be responsible for the antifungal activities of the extracts of the plant. Scientists have shown that these metabolites play defensive roles in the plants producing them. For example, Haralampidis *et al.* (2001) reported that secondary metabolites have been implicated as chemical defense against attack by soil fungi. In the same paper, they further reported that many plants synthesize secondary metabolites as part of their normal programme

of growth and development, often sequestering them in tissues for protection against microbial attack.

From this work, *E. cylindricum* is seen to possess antifungal activity against *C. lunatus*, *F. solani*, *A. niger*, *A. flavus* and *T. longibrachyatum* (Table 3). The activity of the various extracts varied in their inhibitory effect with the different species of fungi. The inhibition of *C. lunatus* to all the extracts was significantly ($P < 0.05$) different compared to that of the other fungi. Ethanol extract exhibited the strongest fungitoxicity against the fungi tested. The observed variation in the susceptibility of the fungi to the extracts may be due to the difference in the chemical, physiological and structural integrity of the fungi (Alade and Irobi, 1993). The difference in the inhibition of the extracts may be because the various solvents extracted to varying degrees (Qasem and Abu-Blan, 1996; Onifade, 2000).

Table 1: Percentage yield of the *Entandrophragma cylindricum* stem bark extracts using different solvents

Solvent	Weight of material extracted (g)	Weight of extract (g)	Yield (%)
Ethanol	650	29.3	4.51
Chloroform	650	14.1	2.17
Petroleum ether	650	19.7	3.03
Water	650	10.4	1.60

Table 2: Phytochemical analysis of the various extracts of *Entandrophragma cylindricum* stem bark

Phytochemical	Ethanol	Chloroform	Petroleum ether	Water
Alkaloids	+	+	+	+
Tannins	+	-	+	-
Steroids	-	-	-	-
Flavonoids	+	+	+	+
Saponins	-	-	-	-
Anthraquinones	-	-	-	-
Reducing sugar	-	-	-	-
Cardiac glycosides	-	-	-	-
Phenols	+	+	-	-
Terpenoids	-	-	-	-

Key: + = Present; - = Absent

Table 3: Antifungal activities of extracts of stem bark of *Entandrophragma cylindricum* against some plant pathogenic fungi (%)

Fungi	Ethanol	Chloroform	Petroleum ether	Water	Control
<i>Curvularia lunatus</i>	72.87 ^a	64.34 ^a	50.39 ^a	41.86 ^a	0
<i>Fusarium solani</i>	44.96 ^c	39.54 ^c	25.58 ^c	16.28 ^c	0
<i>Aspergillus niger</i>	34.32 ^d	30.10 ^d	8.61 ^e	14.58 ^c	0
<i>Aspergillus flavus</i>	28.65 ^e	27.51 ^d	15.12 ^d	13.19 ^c	0
<i>Trichoderma longibrachyatum</i>	57.36 ^b	51.16 ^b	42.64 ^b	36.43 ^b	0

Means in the same column with different superscripts are significantly different (P < 0.05)

Conclusion

This investigation has shown that *Entandrophragma cylindricum* bark extracts contained fungitoxic substances and were effective against *C. lunatus*, *A. niger*, *A. flavus*, *F. solani* and *T. longibrachyatum*. The study also revealed that *C. lunatus* was the most susceptible while *A. flavus* was the least. Ethanol extract exhibited the strongest fungitoxicity against the test pathogens. These findings suggest that *E. cylindricum* stem bark extract could be used as biological fungicides to control the test pathogens in plants.

References

Ahmad, I., Mehomod, Z. and Mohammed, R. (1998). Screening of some Indian medicinal plants for their antimicrobial properties. *Journal of Ethnopharmacology*. 62(2): 193 – 193.

Alade, P. I. and Irobi, O. N. (1993) Antimicrobial activity of *Acalypha wilkensinia*. *Journal of Ethnopharmacology* 39: 171 – 174.

Earnsworth, N. R. (1990). In: Bioactive compounds from plants. Ciba Foundations Symposium No. 154. John Wiley and Sons. pp. 2 – 7.

Garcia, F., Noyer, J. L., Risterucci, A. M. and Chevallier, M. H. (2004). Genotyping of mature trees of *Entandrophragma cylindricum* with micro satellites. *Journal of Heredity* 95(5): 454 – 457.

Ghorbany, M. and Salary, M. (2004). Application of plant products to control of some soil borne fungal pathogens. Book of Abstracts. 2nd European Allelopathy Symposium. “Allelopathy from understanding to application”. Pg 17.

Gill, L. S. (1992). Ethnomedicinal uses of plants in Nigeria. Uniben Press, University of Benin, Benin City, Nigeria.

Gupta, S. K. and Tripathi, S. C. (2011). Fungitoxic activity of *Solanum torvum* against *Fusarium sacchari*. *Plant Protection Science* 47:83 – 91.

Haralampidis, K., Bryan, G., Qi, X., Papdopoulou, K., Bakht, S. Melton R. and Osbourn, A. (2001). A new class of oxidosqualene cyclases direct synthesis of antimicrobial phytoprotectans in monocots. *Proceedings of the National Academy of Science of the United States of America* 98(23): 13431 – 13436.

Ijato, J. Y. Adebiyi, A.O. and Ijadunola, J. A. (2011). Antifungal effects of four tropical aqueous and ethanol extracts on postharvest rot of tomato (*Lycopersicum esculentum*) in Ado Ekiti, Nigeria. *New York Science Journal* 4(1): 64 – 68.

Kumar, R. (1984). Insect pest control with special reference to African agriculture (1sted.) ELES London. P. 186 – 188.

Nduagu, C. Ekefan, E. J. and Nwankiti, A. O. (2008). Effect of some crude plant extracts on growth of *Colletotrichum capsici* (synd) and Bisby, agent of pepper anthracnose. *Journal of Applied Bioscience* 2: 184 – 190.

Nwachukwu, E. O. and Umechuruba, C. I. (2001). Antifungal activities of some leaf extracts on seed borne fungi of African yam bean seeds, seed germination and seedling emergence. *Journal of Applied Sciences and Environmental Management* 5(1): 29-32.

Okigbo, R. N. and Igwe, D. I. (2007). The antifungal effect of *Piper guineensis* 'Uziza' and *Phyllanthus amarus* 'ebe-benizo' on *Candida albican* and *Streptococcus faecalis*. *Acta Microbiologica et immunologica Hungarica* 54(4): 353 – 366.

Okigbo, R. N. Eme, U. E., Asiedu, R. and Romesh, P. (2009). Effect of crude extracts of *Allium sativum* Linn, *Cymbopogon citratus* CD. Stapt and *Terminalia catappa* on rot causing fungi of *Dioscorea* species. *Nigerian Journal of Botany* 22(2): 359 – 369.

Okwu, D. E., Awurum, A. N. and Okoronkwo, J. I. (2007). Phytochemical composition and *in vitro* antifungal activity screening of extracts from citrus plants against *Fusarium oxysporum* of okra plant (*Hibiscus esculentus*). *African Crop Science Conference Proceedings* 8:1755 – 1758.

Onifade, A. K. (2000). Antifungal effect of *Azadirachta indica* A. Juss extracts on *Colletotrichum lindemuthianum*. *Global Journal of Pure and Applied Science* 6(3): 425 – 428.

Poongothai, A. Sreena, K. P. Saradhadevi, K. M., Santhi, R. and Annapoornani, S. (2011). Phytochemical investigation of *Ficus glomerata* Linn leaves. *Res. J. Pharm. Biol. and Chem. Sci.* 2(1): 324 – 328.

Qasem, J. R. and Abu-Blan, H. A. (1996). Fungicidal activity of some common weed extracts against different plant pathogenic fungi. *Journal of phytopathology*. 144: 157 – 161.

Schumutterer, H. (1995). The neem tree: source of unique natural products for integrated pest management, medicine, industry and other purposes, VCH, Weinheim, Germany, pp. 45 – 69.

Shariff, Z. U. (2001). Modern Herbal therapy for common ailments.. Nature Pharmacy series (Vol. 1) Spectrum Books Ltd, Ibadan, Nigeria in Association with Safari Books (Export) Limited, United Kingdom, pp. 9 – 84.

Singh, D. (1994). Scope of medicinal and aromatic plants in pest management. International symposium, Allelopathy in sustainable Agriculture, Forestry and Environment, pg. 68, New Delhi, Sept. 6 – 8.

Statistical Analytical System (SAS) (2002). User's guide. Statistics version 91, SAS Institute Inc. Raleigh NY, USA.

Stompor-Chrzan, E. (2004). Antifungal activity of leaf and bark extracts on the growth and development of damping off fungi and their practical utilization in protection of seedlings. Book of Abstracts 2nd European Allelopathy Symposium. "Allelopathy from understanding to application". Pg 152.

Trease, G.E. and Evans, W. C. (1989). Pharmacognosy (13thed.) English Language Book Society, Bailliere Tindall, Britain, pp. 378, 386 – 480.

Van Emden, H. E. and Peakall, D. B. (1996). Beyond silent spring (1sted.) Chapman and Hall publishing 2 – 6 Boundary New London. Pg. 62.

Wokoma, E. C. and Anaemene, I. A. (2003). Effect of aqueous extracts of medicinal plants on growth of *Fusarium oxysporum*, *Global Journal of Agric Science*. 2:9-15.